B.Sc. 5th Semester (General) Examination, 2020 (CBCS) Subject: MATHEMATICS Paper: MATH-G-DSE-T-01-A (Matrices and Linear Algebra)

Full Marks: 60

Time: 3 Hours

 $2 \times 10 = 20$

The figures in the right-hand margin indicate marks.

The notations and symbols have their usual meanings.

1. Answer any **TEN** questions.

i) If
$$A = \begin{pmatrix} 2 & -5 \\ 3 & 1 \end{pmatrix}$$
, find scalars *a*, *b* such that $I + aA + bA^2 = 0$.

Find the matrices A and B such that $2A + B^t = \begin{pmatrix} 2 & 5 \\ 10 & 2 \end{pmatrix}$ and ii) $A^t + 2B = \begin{pmatrix} 1 & 8 \\ 4 & 1 \end{pmatrix}.$

- Determine the value of k so that $\{(1, 2, -1), (2, 0, 1), (-1, 1, k)\}$ represents a iii) basis of \mathbb{R}^3 .
- Express α in terms of β and γ , where $\alpha = (3, 7), \beta = (2, 4), \gamma = (-1, 1)$. iv)
- Express α in terms of β and γ , where α $\begin{pmatrix} 0 & 1 & -2 \\ 1 & \lambda & 3 \\ 2 & 1 & 2 \end{pmatrix}$ is non-singular. v)

Test whether the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by vi) T(x, y) = (2x + 1, 2y - 1) represents a linear transformation or not.

- Determine the characteristic polynomial of $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, and hence find vii) the eigen values of A.

viii) Let $A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$, then find eigen values of A^5 .

- Let $W = \{(x, y, z) \in \mathbb{R}^3 : x 4y + 3z = 0\}$, then check whether W is a ix) subspace of \mathbb{R}^3 .
- Find inverse of $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. x)
- Determine eigen vectors of $\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$. xi)
- xii) For a matrix A, if $A^2 = A$, then find the eigen values of A.
- xiii) Express $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$ as the product of elementary matrices.

- xiv) Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,0,3) = (1,1) and T(-2,0,-6) = (2,1)? Justify.
- xv) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T(a_1, a_2) = (a_1 + a_2, a_1)$. Is T bijective? Justify.
- 2. Answer any **FOUR** questions.
 - a) If $(I_n A)(I_n + A)^{-1}$ is orthogonal, then show that A is skew symmetric.
 - b) Let $W = \{(x, y, z) \in \mathbb{R}^3 : 2x y + 3z = 0, x + y + z = 0\}$. Show that W is a basis of \mathbb{R}^3 .
 - c) Using elementary operations, find the inverse of $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & -2 \\ -2 & -4 & -4 \end{pmatrix}$.
 - d) Determine γ and μ so that the system of linear equations x + y + z = 1, $x + \gamma y + 4z = \mu$ and $x + \gamma^2 y + 10z = \mu^2$ has i) unique solution, ii) no solution and iii) an infinite number of solutions.
 - e) Show that $W_1 = \{(x, y, z): x + y + z = 0\}$ and $W_2 = \{(x, y, z): y = z\}$ are two subspaces of \mathbb{R}^3 . Find dimension of W_1, W_2 and $W_1 \cap W_2$.
 - f) Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (2a_1 a_2, 3a_1 + 4a_2, a_1)$ represents a linear transformation. Hence find the matrix representation of *T* with respect to the standard ordered bases of \mathbb{R}^2 and \mathbb{R}^3 . 2+3
- 3. Answer any **<u>TWO</u>** questions.
- A) i. Obtain a basis of \mathbb{R}^3 containing the vectors (2, -1, 0) and (1, 3, 2). **4+6** ii. Determine the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 to (2, 1, 1), (1, 2, 1), (1, 1, 2), respectively. Find *Ker T*, *Im T*. Also, verify rank-nullity theorem for *T*.
- B) i. Prove that every non-null subspace W of a finite dimensional linear space V(F) is finite dimensional and $\dim W \leq \dim V$. 4+6

ii. Diagonalize the matrix
$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
.

- C) i. Let V and U be two finite dimensional vector spaces over a same scalar field F. Then prove that L(V, U) is finite dimensional. Also find its dimension in terms of the dimensions of V and U. 5+(1+4)
 - ii. Define isomorphism on a vector space. A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ maps the vectors (1, 2, 3), (3, 0, 1) and (0, 3, 1) to (-3, 0, 2), (-5, 2, -2) and (4, -1, 1), respectively. Check whether *T* is an isomorphism.
- D) i. Solve the system of linear equations, $x_1 + 2x_2 + 3x_3 = 1$, $4x_1 + 5x_2 + 6x_3 = 2$, $7x_1 + 8x_2 + 2x_3 = 3$. 4+3+3

$10 \times 2 = 20$

$5 \times 4 = 20$

- ii. If μ be an eigen value of an invertible matrix A, then prove that $\frac{1}{\mu}$ is an eigen value of A^{-1} .
- iii. Find the matrix representation of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x + y + z, x + 2y + z) relative to the ordered basis $B = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ and $B^{/} = \{(1, 2), (2, 1)\}.$