B.Sc. $5^{\text {th }}$ Semester (General) Examination, 2020 (CBCS)
 Subject: MATHEMATICS

Paper: MATH-G-DSE-T-01-A
(Matrices and Linear Algebra)

Full Marks: 60
Time: 3 Hours
The figures in the right-hand margin indicate marks.
The notations and symbols have their usual meanings.

1. Answer any TEN questions.
$2 \times 10=20$
i) If $A=\left(\begin{array}{cc}2 & -5 \\ 3 & 1\end{array}\right)$, find scalars a, b such that $I+a A+b A^{2}=0$.
ii) Find the matrices A and B such that $2 A+B^{t}=\left(\begin{array}{cc}2 & 5 \\ 10 & 2\end{array}\right)$ and $A^{t}+2 B=\left(\begin{array}{ll}1 & 8 \\ 4 & 1\end{array}\right)$.
iii) Determine the value of k so that $\{(1,2,-1),(2,0,1),(-1,1, k)\}$ represents a basis of \mathbb{R}^{3}.
iv) Express α in terms of β and γ, where $\alpha=(3,7), \beta=(2,4), \gamma=(-1,1)$.
v) Determine the value of λ so that the matrix $\left(\begin{array}{ccc}0 & 1 & -2 \\ 1 & \lambda & 3 \\ 2 & 1 & 2\end{array}\right)$ is non-singular.
vi) Test whether the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(2 x+1,2 y-1)$ represents a linear transformation or not.
vii) Determine the characteristic polynomial of $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 5 & 2 \\ 0 & 0 & -2\end{array}\right)$, and hence find the eigen values of A.
viii) Let $A=\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)$, then find eigen values of A^{5}.
ix) Let $W=\left\{(x, y, z) \in \mathbb{R}^{3}: x-4 y+3 z=0\right\}$, then check whether W is a subspace of \mathbb{R}^{3}.
x) Find inverse of $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$.
xi) Determine eigen vectors of $\left(\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right)$.
xii) For a matrix A, if $A^{2}=A$, then find the eigen values of A.
xiii) Express $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$ as the product of elementary matrices.
xiv) Is there a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(1,0,3)=(1,1)$ and $T(-2,0,-6)=(2,1)$? Justify.
xv) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}+\right.$ a_{2}, a_{1}). Is T bijective? Justify.
2. Answer any FOUR questions.
$5 \times 4=20$
a) If $\left(I_{n}-A\right)\left(I_{n}+A\right)^{-1}$ is orthogonal, then show that A is skew symmetric.
b) Let $W=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x-y+3 z=0, x+y+z=0\right\}$. Show that W is a basis of \mathbb{R}^{3}.
c) Using elementary operations, find the inverse of $A=\left(\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & -2 \\ -2 & -4 & -4\end{array}\right)$.
d) Determine γ and μ so that the system of linear equations $x+y+z=1, x+\gamma y+$ $4 z=\mu$ and $x+\gamma^{2} y+10 z=\mu^{2}$ has i) unique solution, ii) no solution and iii) an infinite number of solutions.
e) Show that $W_{1}=\{(x, y, z): x+y+z=0\}$ and $W_{2}=\{(x, y, z): y=z\}$ are two subspaces of \mathbb{R}^{3}. Find dimension of W_{1}, W_{2} and $W_{1} \cap W_{2}$.
f) Show that the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(2 a_{1}-a_{2}, 3 a_{1}+\right.$ $\left.4 a_{2}, a_{1}\right)$ represents a linear transformation. Hence find the matrix representation of T with respect to the standard ordered bases of \mathbb{R}^{2} and \mathbb{R}^{3}.
3. Answer any TWO questions.
$10 \times 2=20$
A) i. Obtain a basis of \mathbb{R}^{3} containing the vectors $(2,-1,0)$ and $(1,3,2)$.

4+6
ii. Determine the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that maps the basis $\{(0,1,1),(1,0,1),(1,1,0)\}$ of \mathbb{R}^{3} to $(2,1,1),(1,2,1),(1,1,2)$, respectively. Find $\operatorname{Ker} T, \operatorname{Im} T$. Also, verify rank-nullity theorem for T.
B) i. Prove that every non-null subspace W of a finite dimensional linear space $V(F)$ is finite dimensional and $\operatorname{dim} W \leq \operatorname{dim} V$.
$4+6$
ii. Diagonalize the matrix $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$.
C) i. Let V and U be two finite dimensional vector spaces over a same scalar field F. Then prove that $L(V, U)$ is finite dimensional. Also find its dimension in terms of the dimensions of V and U.
$5+(1+4)$
ii. Define isomorphism on a vector space. A linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ maps the vectors $(1,2,3),(3,0,1)$ and $(0,3,1)$ to $(-3,0,2),(-5,2,-2)$ and $(4,-1,1)$, respectively. Check whether T is an isomorphism.
D) i. Solve the system of linear equations, $x_{1}+2 x_{2}+3 x_{3}=1,4 x_{1}+5 x_{2}+6 x_{3}=2$, $7 x_{1}+8 x_{2}+2 x_{3}=3$.
$4+3+3$
ii. If μ be an eigen value of an invertible matrix A, then prove that $\frac{1}{\mu}$ is an eigen value of A^{-1}.
iii. Find the matrix representation of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(2 x+y+z, x+2 y+z)$ relative to the ordered basis $B=$ $\{(1,1,0),(0,1,1),(1,0,1)\}$ and $B^{\prime}=\{(1,2),(2,1)\}$.

